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Abstract. Greisen & Calabretta (2002) developed a generalized method for specifying coordinate systems for FITS images
such as might be obtained from ideal astronomical instruments. This paper extends that work by providing methods to describe
the distortions inherent in the image coordinate systems of real astronomical data.
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1. Introduction

Astronomical instrumentation typically produces a distorted
representation of its subject matter. Instrument makers labour
to minimize such defects, and may succeed to within quite nar-
row limits, but no measurement is ever entirely free of system-
atic error. Astrometry, spectroscopy and other areas of astron-
omy that seek to extract the highest accuracy from data must
compensate for the effect of such imperfections, either by the-
oretical or empirical means.

As foreshadowed in Greisen & Calabretta (2002),
Calabretta & Greisen (2002) and Greisen et al. (2004), here-
inafter referred to as Papers I, II & III, this paper, Paper IV in
the series, addresses the problem of describing distortions as
they apply to image coordinate systems. It builds on the foun-
dation provided by Paper I by interposing additional steps in the
chain of operations by which world coordinates are computed
from pixel coordinates, and vice versa, as shown schematically
in Fig. 1. This figure may be compared with the corresponding
diagram in Papers I & II.

Paper IV is a logical step in the historical development of
the representation of world coordinates in FITS, the Flexible
Image Transport System introduced by Wells, Greisen &
Harten (1981) and most recently codified by Hanisch et al.
(2001). While the foundation paper took a rather simplified
view of coordinates, providing only the mechanics for de-
scribing linear coordinate systems, it was soon augmented by
Greisen (1983) to include a small selection of non-linear celes-
tial and spectral coordinate systems. Greisen’s work, referred to
as the “AIPS convention”, soon become a de facto FITS stan-
dard. It was put on a sound footing and significantly extended
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Fig. 1. Conversion of pixel coordinates to world coordinates show-
ing optional distortion corrections enclosed in the dashed boxes. For
later reference, the mathematical symbols associated with each step
are shown in the box at right.
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by Papers I, II & III. However, these papers dealt only with
idealized coordinates in the sense that the non-linear transfor-
mations defined are what would be expected of perfect astro-
nomical instruments.

For example, while the ARC celestial projection of Paper II
can broadly describe the geometry of a Schmidt plate with an
oblique celestial coordinate graticule, it cannot account for the
small-scale distortions introduced by imperfect optics or un-
even shrinkage of the photographic emulsion. In some circum-
stances it may be adequate, but in others totally inadequate.
Typically, distortions are described by high-order polynomials
or spline functions with many empirically-derived coefficients.
One celestial projection, ZPN, went part-way in this regard, but
in practice its assumption of radial symmetry is rather limiting.

This work provides general methods to be used in describ-
ing distorted image coordinates. In fact, these methods are so
general that they could be used by themselves to describe a co-
ordinate system to any required degree of accuracy. However,
of necessity they are more complex, bulky and computation-
ally intensive than those of the idealized coordinate systems.
Therefore, we consider that, wherever possible, an image coor-
dinate system should be described as accurately as possible by
one of the ideal representations and that the methods of this pa-
per be used to supply small, residual corrections. By doing so
we seek to provide WCS (world coordinate system) interpreters
with the option of ignoring the residual correction and accept-
ing the accompanying error. To this end we will define meth-
ods for specifying the magnitude of that error. This will help to
identify situations which may arise, for example in defining a
coordinate system for the surface of an irregularly shaped ob-
ject, where the distortion correction is not small and cannot be
ignored.

Keeping the distortion correction small will also assist
when it comes to inverting the coordinate transformation.
Iterative methods will normally be required because distor-
tion functions will not usually have analytic inverses. Small
displacements in relatively smoothly varying functions should
promote rapid convergence.

The presence of correction methods within the FITS con-
ventions is not intended to discourage instrument makers from
minimizing imperfections, nor recalibration of data (e.g. by re-
sampling or regridding without serious loss of information) be-
fore transmission away from the instrument site.

2. Basic concepts

By analogy with Paper I, the framework for representing dis-
tortions consists of specifying an algorithm and defining its pa-
rameters via a set of FITS header keywords.

2.1. Distortion corrections

In Paper I the linear transformation was split into two separate
steps,

qi =

N∑
j=1

mi j(p j − r j), (1)

which transforms vector p of pixel coordinate elements p j to
element qi of intermediate pixel coordinate vector q, and

xi = siqi, (2)

which transforms q to vector x of intermediate world coor-
dinate elements xi. The parameters r j, mi j, and si are given
by the FITS header cards1 CRPIX ja, PCi ja, and CDELTia.
Alternatively, the product simi j may be given by CDi ja cards.

Figure 1 shows that a distortion correction may be applied
before or after the matrix multiplication of Eq. (1). Where it
appears before (a prior distortion correction) it has the mathe-
matical form

p′j = p j + δp j (p), (3)

where δp j (p) is a prior distortion function, and p′j is an element
of the corrected pixel coordinate vector p′ which then replaces
p j in Eq. (1). Where it appears after (a sequent distortion cor-
rection) it has the form

q′i = qi + δqi (q), (4)

where q′i is an element of the corrected intermediate pixel co-
ordinate vector q′ and replaces qi in Eq. (2). Equations (3) and
(4) may be written in vector form

p′ = p+ δp(p), (5)
q′ = q + δq(q), (6)

a useful notational convenience when referring to the collection
of individual distortion corrections and functions.

Note that the prior distortion functions, δp(p), operate on
pixel coordinates (i.e. p rather than p− r), and that the indepen-
dent variables of the distortion functions are the uncorrected
pixel or intermediate pixel coordinates. That is, for example,
we do not allow the possibility of

q′3 = q3 + δq3 (q′1, q
′
2). (7)

To do so would risk introducing circular dependencies. Even if
these were solvable it would place too great a burden on WCS
interpreters to disentangle them, probably also involving sig-
nificant computational overhead.

Prior and sequent distortion corrections should not nor-
mally appear together in a well constructed coordinate rep-
resentation, though such mixed distortion corrections are not
precluded. In fact, since distortion corrections are applied on
an axis-by-axis basis, it would be quite reasonable to have a
mixed correction when the linear transformation matrix is di-
agonal. In such a case it might be possible to achieve the effect
of Eq. (7) above by correcting the pixel coordinates from which
q1 and q2 were computed.

Mathematically speaking, there is no significant difference
between prior and sequent distortion corrections; generally it
should be possible to translate one usage into the other. The
dichotomy is provided as a matter of convenience depending
on where the distortion arises in the instrumentation.

1 Usage in this paper of the keyword indices i, j, m, and a is consis-
tent with their definition in Paper I.
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Fig. 2. Pathology of the inversion of a two-dimensional distortion function. (a) Injectivity is violated where points I1 and I2 both map to the
same point in the distorted grid which thus does not have a unique inverse. (b) Point S in the range of δp has no counterpart in its domain,
thus violating surjectivity. In this example the tear that gave rise to S also creates duplicate mappings such as point F so that the mapping is
not even a function in the strict mathematical sense. (c) The “tearaway” in the boundary at T, and the overlap in the upper-left corner, would
severely test inversion algorithms. Even where inversion is possible in a mathematical sense, it may be difficult to achieve in practice at points
in the vicinity of these irregularities since inversion algorithms, such as those based on interval dissection, necessarily operate over finite spans.
Practical algorithms would also normally assume that the distorted grid is defined within a rectangular region R enclosing the distorted image
boundary. This may even affect inversion at points such as P that otherwise might be thought to be relatively straightforward.

Where the major part of the distortion arises in the detec-
tor, as may be the case with spatial distortion in a CCD (charge-
coupled device) chip, the correction should be pretty-well static
for each chip and could be determined once and for all (this
is why δp(p) operates on the raw pixel coordinates, refer to
Sect. 2.5.2 for subimaging options in this case). Thus it would
best be applied to the pixel coordinates. The transformation
matrix would then account for any linear errors - rotation, scale
and skewness - arising from the placement of the detector in a
particular observation.

On the other hand, where the distortion arises outside the
detector, as might be the case where imperfections in a tele-
scope’s optics give rise to distortions that are pretty-well fixed
in the focal plane, it would be best to account for the placement
of the photographic plate first via the linear transformation ma-
trix, and then correct for the distortion induced by the optics.

Bear in mind that computation of the distortion correction
may present a significant overhead, particularly in inverting the
transformation, so WCS composers should avoid constructing
mixed distortion corrections unless there are compelling rea-
sons to do so.

2.2. Invertibility

While the majority of algorithms defined in Papers II & III have
analytic inverses, we do not expect this of distortion functions
because of their greater complexity. Thus, as mentioned above,
iterative methods will normally be required to invert them. For
example, the distortion functions in Sect. 3 are defined only
in one direction and no attempt is made to find their analytic
inverse. Accordingly, whatever its location in the algorithm
chain, we require that the distortion function be defined so that

its natural direction is from pixel coordinates to world coordi-
nates (the direction of the arrows in Fig. 1). This requirement
is made primarily to simplify matters for software written to
implement these methods.

In order to be invertible, distortion functions must sat-
isfy the mathematical properties of injectivity and surjectivity
shown schematically in Fig. 2. A transformation is injective (or
one-to-one) if each point in its range is mapped to by no more
than one point in its domain. A transformation is surjective (or
onto) if each point in its range is mapped to by at least one
point in its domain. For our purposes the domain and range are
defined by the set of points on and interior to the boundary of
the image. We assume that the boundary in pixel coordinates
is mapped to a continuous and closed curve at each of the first
three steps of Fig. 1 (but not the fourth and last step).

Regarding this last step, Paper II notes that since image
planes are rectangular and the boundary of many celestial
spherical projections is curved, an image may contain pixels
that are outside the boundary of the projection. In other words,
the transformation is not even defined at some points and there-
fore is not invertible. This is unavoidable but manageable be-
cause WCS interpreters can identify such points as being out-
side the normal range of native longitude or latitude. However,
header interpretation example 3 of Paper II illustrates the sub-
tle problems that can arise in such cases for improperly con-
structed WCS.

Distortion functions differ somewhat from the celestial
case because there is no obvious method for identifying rogue
points. However, surjectivity is not likely to be a limiting re-
quirement for real astronomical instrumentation; we don’t ex-
pect any gaps or holes in an output image and even if there were
the distortion function could probably be interpolated across
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them. On the other hand, injectivity could conceivably be vio-
lated in the presence of severe distortions, thus reflecting a real
and probably unrecoverable loss of information. This would
lead to the situation where a world coordinate had a non-unique
inverse value. In such a case the solution chosen by the WCS
interpreter would have to be implementation dependent.

Another aspect of the invertibility requirement is that the
distortion function must be defined at all points in the image; or
to put it another way, no extrapolation methods are defined for
distortion functions. WCS interpreting software will provide
implementation-specific behavior in the event that a coordinate
calculation is required in a part of an image not covered by a
distortion function. This might consist simply of signalling an
error or of assuming a zero correction; the choice may depend
on the accuracy required with respect to the error indicated by
keywords defined in Sect. 2.5.3.

Establishing injectivity and surjectivity for a particular dis-
tortion function may have to be done empirically. Where ei-
ther is violated within the domain of the image the WCS writer
should verify that this is a real artifact of the astronomical in-
strument.

2.3. Application

Distortion corrections may be used in any of three ways by
FITS-reading software packages:

1. Ignore them and accept the accompanying error.
Section 2.5.3 defines keywords that record the mag-
nitude of such error.

2. Apply them once and for all by re-regridding the image.
3. Associate distortion corrections with the image in some

implementation-dependent way for use whenever coordi-
nates need to be computed.

An important consequence of the first option is that neither
δp(p) nor δq(q) may introduce a rescaling. While p, p′, q, and
q′ are all nominally pixel coordinates, if a CDi ja matrix is used
and has scaled q to physical units, then q′ must have the same
units.

Use of the first and second options relies on the corrections
being small (enough) and the third implies that the distortion
correction must be amenable to subimaging and image trans-
position operations and must be in a form suitable for incorpo-
ration into image analysis software packages.

Although regridding may seem to solve the distortion prob-
lem “once and for all”, it may not always be an option since it
often introduces correlation into the noise in the map and can
lead to problems in error estimation. Also, many regridding al-
gorithms are not flux conservative on censored data (e.g. when
pixels have been lost due to CCD defects, cosmic rays, etc.)
and may not be an option.

2.4. Distortion correction keywords

2.4.1. Distortion function keywords

Standard ”4-3” form for CTYPEia, defined in Paper I for en-
coding non-linear algorithms, is not simply extensible for the

needs of this paper principally because the i in CTYPEia always
refers to qi and hence is not suitable for prior distortion correc-
tions which are based on p j. Moreover, an extension of “4-3”
form, say to “4-3-3” form, would result in an awkward syntax
for linear coordinate types such as ’FREQ’, leading to keyval-
ues2 like ’FREQ-----XYZ’. This may also cause problems for
software implementations that key on the fifth character being
’-’ when identifying non-linear coordinate types. Instead we
here introduce two new keywords

CPDIS ja (string-valued), and
CQDISia (string-valued)

to record distortion function codes for prior and sequent distor-
tion corrections respectively. Several distortion codes will be
defined in Sect. 3. These are not limited to three characters and
so may be more mnemonic.

2.4.2. Distortion parameter keywords

Paper I introduced the PVi ma FITS keywords to record the
parameters required by the formulæ encoded by the CTYPEia
algorithm codes. For example, the standard parallels for conic
projections are recorded as PVi 1a and PVi 2a (in sum and dif-
ference form), where i corresponds to the latitude axis. Up to
100 parameters are catered for with the m subscript ranging
from 0 to 99 and this is ample for the non-linear functions en-
countered. Thus far, only one non-linear algorithm has been
defined (the ZPN projection of Paper II) that requires more than
a single digit for m.

However, 100 parameters will generally be insufficient for
the larger, more complex distortion functions so m would ex-
tend to at least three digits. This presents a significant problem
in devising a suitable keyword for use in binary tables because
of the eight-character limit on FITS keyword names. For exam-
ple, the BINTABLE form of PVi ma is given in Paper I Table 2
as iVn ma. If m consumed three characters, with i, V, the under-
score which is required to separate two groups of digits, and
a, all using one character, then only one character would re-
main for the column number, n, and this is much too restrictive.
Furthermore, the keyword is so skeletal that only one charac-
ter, V, serves to identify it. If many of the 26 possible variants of
this type of keyword started to proliferate they would quickly
become non-mnemonic.

Another property of the distortion function parameters is
that they will often most naturally be described by a data struc-
ture. Ideally they should be represented in FITS as named ele-
ments of such a data structure.

These considerations have led us to develop a class of FITS
keywords that have a new semantic type but still conform to
conventional syntax as codified by Hanisch et al. (2001). In
short, the keywords are string-valued, but the string is to be
interpreted as a definition giving (1) a record field name, and
(2) its floating point value. Such keywords will be described as
record-valued. In a FITS header they have the following syntax

keyword= ’field-specifier: float’

2 A keyvalue is the value associated with a keyword.



Calabretta et al.: Representations of distortions in FITS world coordinate systems 5

where keyword is a standard eight-character FITS keyword
name, float is the standard FITS ASCII representation of a
floating point number, and these are separated by a single
blank denoted here by  . As with string-valued keywords, when
record-valued keywords are recorded in a column of a FITS
ASCII or binary table the single quotes that are used as delim-
iters for string-valued header keyvalues must be omitted.

The grammar for field-specifier is

field-specifier:
field
field-specifier. field

field:
identifier
identifier.index

where identifier is a sequence of letters (upper or lower case),
underscores, and digits of which the first character must not be
a digit, and index is a sequence of digits. No blank characters
may occur in the field-specifier; its definition is a required part
of the value of a record-valued keyword. The index is provided
primarily for defining array elements though it need not be used
for that purpose.

Multiple record-valued keywords of the same name but dif-
fering values may be present in a FITS header. These will be
referred to in this paper using the abbreviation

keyword · field-specifier ,

which recognizes that the field-specifier may be viewed as part
of the keyword name, or alternatively that the keyword name
may be considered to be the first part of the field-specifier.

Record-valued keywords differ from the informal
HIERARCH keyword3 in that they conform to standard
FITS syntax and they may have a name other than HIERARCH,
specifically in that they may be indexed. This allows keyword
names to be defined so that all keywords for a particular
coordinate representation may be identified solely via the
keyword name, without needing to examine any keyvalues.
Thus we here introduce the

DP ja (record-valued), and
DQia (record-valued)

keywords to record the parameters required by the prior and
sequent distortion functions respectively. The corresponding
forms for BINTABLE image arrays are

jDPna (record-valued), and
iDQna (record-valued)

and for pixel lists they are

TDPna (record-valued), and
TDQna (record-valued).

3 Used by the European Southern Observatory (ESO), see
http://archive.eso.org/dicb/dicd/dic-1-1.4.html#30006.

2.4.3. Distortion parameter arrays

Paper I introduced the parameter-array syntax for iVn ma, i.e.
iVn Xa, to allow an array of parameters to occupy a single col-
umn of a binary table; all parameters up to the maximum di-
mension of the column given by its TFORMn keyword must be
specified. This was developed mainly to circumvent the restric-
tion on index values imposed by the eight-character limit on the
keyword name. However, it is also quite a useful storage con-
vention, primarily for binary tables containing image arrays for
which the parameters differ from row to row.

This convention may be extended to record-valued param-
eters such as jDPna and iDQna simply by allowing the table
column containing such keywords to contain more than one
of them. Since record-valued keywords are implemented as
strings this may be done in either of two ways:

– Using the “Substring array” convention of either fixed
or variable length substrings based on qualifying the
TFORMn keyword for a character array field (TFORMn =
’rA:SSTRw/ddd’) as defined in Appendix C of Cotton et
al. (1995). This is the preferred method.

– Using the “Multidimensional array” convention based on
the TDIMn keyword defined in Appendix B of Cotton et
al. (1995). The table column would consist of a two-
dimensional character array. The first dimension of TDIMn
would be set to the maximum length of any of the keyval-
ues, and the second dimension would correspond to their
number.

Unlike an iVn Xa array, there is no need to store the full set of
parameters because the field-specifier in each value provides
the necessary context. Hence distortion parameters with appro-
priate default values need not be specified. Where necessary
for fixed-length substrings or multidimensional character ar-
rays, null substrings may be specified as a keyvalue consisting
solely of blanks.

This convention is not relevant to pixel lists. Each row of a
pixel list stores a pixel coordinate and value that comprise one
particular image and it would not make sense to store the full
set of parameters for each pixel.

2.5. Distortion parameter keyvalues

Paper I discussed the problem of grouping image axes. It left
open the precise method by which this was to be accomplished
but pointed forward to a construct defined in Paper II that was
to serve as a model. Paper II formalized the simple ‘xLON/xLAT’
and ‘yzLN/yzLT’ conventions based on the first four characters
of CTYPEia for associating longitude/latitude coordinate pairs.
In fact, this was simply a generalization of the usage estab-
lished by the AIPS convention. However, as far as distortions
are concerned, the axis grouping problem is generally too com-
plex to be handled by such simple methods and a more rigorous
formalism is required. The method adopted here is to define the
grouping via several DP ja and DQia parameters.

In this and subsequent sections, where usage is described in
terms of the DP ja keywords, exactly the same applies for DQia,
and vice versa, unless stated otherwise.
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Firstly, we need to consider that some astronomical instru-
ments may introduce dependencies between axes of different
physical types. A good example is a Fabry-Perot interferome-
ter which produces a data cube with two spatial and one spec-
tral axis. Wavelength away from the image centre varies in a
well-defined way as a function of position. Ideally

λ(r) = λ0 cos(tan−1(r/C)), (8)

where r is the arc length from the optical axis to the field
point and C is a scale angle characteristic of the interferom-
eter. While such a simple non-linearity could be represented
via the methods of Paper I, in a real Fabry-Perot interferom-
eter the spatial plane and the spectral axis may contain addi-
tional complex, possibly interdependent distortions. One could
imagine wanting to describe the distortion in the spectral axis
as a polynomial in all three coordinates, with the spatial dis-
tortion, independent of wavelength, given by two-dimensional
B-splines.

2.5.1. Axis coupling parameters

If we take the ideal Fabry-Perot interferometer of Eq. (8)
as a concrete example, the spectral coordinate, which is lin-
ear in wavelength, is dependent on the two spatial coordi-
nates. Assume that wavelength is on the third axis and we
are constructing the primary coordinate description. We set
DP ja·NAXES, where j corresponds to the axis being corrected,
to record the number, N̂, of coordinate axes that will form the
independent variables of the distortion function; we use N̂ to
distinguish this number from the number N of axes in the im-
age. If omitted from the header this value defaults to zero, i.e.
no distortion correction. We then set DP ja·AXIS. ̂, with default
value ̂, for ̂ = 1, . . . , N̂, to record the coordinate axes that axis
j depends on. In our example DP3·NAXES = 2, DP3·AXIS.1 =
1, and DP3·AXIS.2 = 2 for the two spatial axes. Subsequently
in this paper these will be denoted by p̂ ̂ or q̂ı̂ ( ̂, ı̂ = 1, . . . , N̂)
where the hat is used to indicate a different indexing scheme
from that of the j or i indices.

So far we have used 1 + N̂ parameters to define the inde-
pendent variables of the distortion function. These also have an
explicit ordering which is a useful feature that simplifies im-
age transposition - the parameters can readily be permuted to
suit. Continuing the Fabry-Perot example, to transpose the two
spatial axes in the data array, leaving the spectral axis as is, the

header keywords and values on the left below would have to
change to those on the right:

CRPIX1 = 129 CRPIX2 = 129

CRPIX2 = 513 CRPIX1 = 513

CRPIX3 = 772 CRPIX3 = 772

CDELT1 = -0.000277778 CDELT2 = -0.000277778

CDELT2 = 0.000277778 CDELT1 = 0.000277778

CDELT3 = 0.0000000003 CDELT3 = 0.0000000003

CRVAL1 = 150.0000000 CRVAL2 = 150.0000000

CRVAL2 = -35.0000000 CRVAL1 = -35.0000000

CRVAL3 = 0.000000530 CRVAL3 = 0.000000530

CTYPE1 = ‘RA---TAN’ CTYPE2 = ‘RA---TAN’

CTYPE2 = ‘DEC--TAN’ CTYPE1 = ‘DEC--TAN’

CTYPE3 = ‘WAVE′ CTYPE3 = ‘WAVE′

CPDIS3 = ‘Polynomial’ CPDIS3 = ‘Polynomial’

DP3 = ’NAXES: 2’ DP3 = ’NAXES: 2’

DP3 = ’AXIS.1: 1’ DP3 = ’AXIS.1: 2’

DP3 = ’AXIS.2: 2’ DP3 = ’AXIS.2: 1’

DP3 = . . . DP3 = . . .
...

...

While the names of the keywords have changed because j = 1
swaps with j = 2, and likewise for i, the keywords are in the
same semantic order as before. Thus the values to the right of
the equals signs are the same as before except for DP3·AXIS.1
and DP3·AXIS.2 which refer to axis numbers.

In this context we note that Paper I discourages permutation
of the transformation matrix to handle such transpositions, i.e.
by using off-diagonal elements, PC1 1 would become PC1 2,
etc. Although simpler to implement (because only CRPIX ja
and PCi ja need to be changed), such techniques produce rep-
resentations that are too confusing for human interpretation.
Moreover they would not work for prior distortion corrections.

2.5.2. Renormalization parameters

In practical applications, it is often desirable to renormalize the
independent variables of the distortion function prior to calcu-
lation as this may help to avoid computational effects such as
rounding errors and overflows or underflows. This is particu-
larly the case when CDi ja is used to define the transformation
matrix with a sequent distortion correction, since CDi ja incor-
porates the scaling of pixel coordinates to physical quantities.

Provision of an offset also allows subimaging applications.
For example, if a CCD array has a fixed and well-known dis-
tortion correction, but only every second in the inner quarter of
the CCD is recorded, then the standard distortion function may
be used with offset and scale parameters chosen to match the
subimage recorded.

Two values are required for each of N̂ independent vari-
ables; an offset, applied first by subtraction, and then a
multiplicative scale. DP ja·OFFSET. ̂ (default value 0.0) and
DP ja·SCALE. ̂ (default value 1.0) will record the offset and
scale for the variable indicated by DP ja·AXIS. ̂.

These parameters, together with those of Sect. 2.5.1, bring
the total number of parameters thus far defined to 1 + 3N̂.
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2.5.3. Maximum correction keywords

As discussed in Sect. 1, typically the distortion correction will
be used to provide small corrections over the best represen-
tation that can be obtained using an ideal coordinate system.
WCS interpreters will have the option of ignoring the resid-
ual correction and accepting the accompanying error. However,
in some cases the corrections will not be small enough to ig-
nore. A method is therefore required to record what this error
amounts to.

On an axis-by-axis basis the

CPERR ja (floating-valued)

and

CQERRia (floating-valued)

keywords record a number that exceeds the maximum absolute
value of the correction computed by Eq. (3) or (4) over the
whole domain of the image.

Each CPDIS ja and CQDISia keyword in the header should
have a matching CPERR ja or CQERRia keyword; normally their
values would be available as a by-product of the derivation
of each distortion function. Typically, the number recorded
will equal the maximum value but the looser condition facili-
tates subimaging without its recomputation. There is no default
value for CPERR ja or CQERRia if missing from the header but
the action of WCS interpreters will be implementation depen-
dent in such cases.

A keyword without axis number

DVERRa (floating-valued)

records the maximum error, ∆, of the combined distortion func-
tions as an offset in pixel coordinates. This error is specified in
pixel coordinates rather than world coordinates, or intermediate
world coordinates, for a number of reasons:

– In general, a distortion defined by Eqs.(3) or (4) could give
rise to a displacement in intermediate world coordinates,
(∆x1 ,∆x2 , . . .) in which the ∆xi are not commensurable (e.g.
a mix of spatial and spectral coordinate elements, this is
particularly the case where the CDi ja matrix is used) and
there is no simple way to combine these into a single error
estimate.

– Pixel coordinates are linear across the image whereas world
coordinates may be very non-linear; a small displacement
in the image plane may lead to a large offset in world coor-
dinates near points where the world coordinates are singu-
lar (e.g. near the native south pole of a zenithal equal area
projection).

– Knowledge of the error in a world coordinate element (e.g.
right ascension) may not be very useful in the absence of
other information (e.g. the declination).

– If required, an offset in pixel coordinates is readily trans-
formed to an offset in intermediate world coordinates by
means of Eqs. (1) and (2) and this will often be interpretable
in terms of the world coordinates (e.g. an offset in (x, y) co-
ordinates in the plane of a celestial projection).

– Image data are often sampled at or near the Nyquist limit,
so an offset in pixel coordinates may be interpretable in that
context.

If there are only prior distortion corrections then

∆ = max


√√√ N∑

j=1

(
δp j (p)

)2

 , (9)

where the maximum is computed over the whole image. In
the general case, where there are one or more sequent distor-
tion corrections, the displacement in pixel coordinates may be
found by computing q without any prior or sequent distortion
corrections, and q′ with all prior and sequent distortion correc-
tions and applying the inverse of Eq. (1) to q′− q. Then ∆ is the
maximum value of this displacement computed for each point
in the image.

DVERRa records a number that exceeds ∆. Normally, it will
equal ∆ but the looser condition facilitates subimaging with-
out its recomputation. Use of DVERRa, while strongly recom-
mended, remains optional. It has no default value.

3. Distortion functions

In this section we define a number of general purpose distortion
functions that we expect will cover most situations although
perhaps not as efficiently as functions specially tailored to their
purpose. We need to be proactive in this because of the time
involved in informing the FITS community of their definition
and in distributing software to interpret them.

Of course, special-purpose distortion functions can still be
defined but there is no guarantee that anyone will know what
to do with them, other than ignore them and accept the residual
error.

As previously, we use the circumflex (hat) accent to distin-
guish the different number of coordinate axes and indices used
for the full set of pixel and intermediate pixel coordinates, p j

and qi ( j, i = 1, . . . ,N) on the one hand, from the subset of these
used as the independent variables of the distortion function, p̂ ̂
and q̂ı̂ ( ̂, ı̂ = 1, . . . , N̂), on the other.

Also, where prior distortion functions are defined, exactly
the same definition applies for sequent distortion functions, and
vice versa.

As we have seen, there are 1+3N̂ distortion parameters that
have a fixed interpretation for all distortion functions; the rest
depend on the particular function.

3.1. Polynomial

Polynomial functions are widely used for fitting measured off-
sets and in this section we will consider how to encode them
in a set of DP ja (likewise DQia) keywords. Conventional poly-
nomials are commonly used, though particular sets of orthog-
onal polynomials are also often employed in order to reduce
the correlation between best-fit coefficients in a least-squares
regression. Legendre and Chebyshev polynomials, the latter
of which minimize the maximum error of the fit, are suitable
for rectangular fields, though as they are univariate functions,
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multi-dimensional fits must be handled as a product of one-
dimensional fits. Zernike polynomials, which are based on the
unit circle and thus inherently two-dimensional, are well suited
to describe aberrations in optical systems.

When an orthogonal basis set of polynomials with inde-
pendent variable x is used for fitting, the result can always be
re-expressed simply as a conventional polynomial in x. Since
we are concerned here only with defining the correction and not
with the method by which it was originally determined, it is of
no consequence that the factorization in terms of basis polyno-
mials is not recorded explicitly (though it should be recoverable
if the nature of the basis set is known).

However, problems may arise when x does not correspond
to an element of pixel coordinate p when defining δp j (p), or
of intermediate pixel coordinate q in defining δqi (q). For ex-
ample, Zernike polynomials are usually expressed in terms of
the polar coordinates (ρ, φ). In fact, as will be seen in Sect. 4.1,
it is often useful to have the radial distance from the origin,
ρ, as an independent variable when doing higher dimensional
fits. Consequently, the formulation presented here will be suf-
ficiently general to deal with ρ directly. However, we will not
consider an azimuthal dependence based on coordinate φ ex-
plicitly since it has no general extension to three or more di-
mensions. Nevertheless, where φ appears as the argument of a
trigonometric function it will often be possible to handle it indi-
rectly. For example, the Zernike polynomials have the general
form Rm

n (ρ) cos(mφ) and Rm
n (ρ) sin(mφ) for the even and odd

polynomials respectively, where the radial functions, Rm
n (ρ), are

themselves orthogonal polynomials. Since

(cos(mφ), sin(mφ)) = (Tm(χ), ηUm−1(χ)), (10)

where (χ, η) = (x/ρ, y/ρ) and Tm and Um are Chebyshev poly-
nomials of the first and second kind, it is apparent that a Zernike
polynomial can always be re-expressed as a polynomial in ρ, χ,
and η. (In fact, Zernike polynomials can always be re-expressed
in the form

∑
i j xiy j, otherwise they wouldn’t be called “poly-

nomials”.)
We now set DP ja·NAUX, default value 0, to define a num-

ber, K ≥ 0, of auxiliary variables (such as ρ for example).
Denoting the N̂ pixel coordinates that form the independent
variables as ( p̂1, p̂2, . . .), and the coefficients for the kth aux-
iliary variable, ρk, as (ak0 , ak1 , ak2 , . . . akN̂

), and their powers as
(bk0 , bk1 , bk2 , . . . bkN̂

), then

ρk =

(
ak0 + ak1 p̂

bk1
1 + ak2 p̂

bk2
2 + . . .

)bk0
. (11)

The coefficients will be encoded as DP ja·AUX.k.COEFF. ̂with
default value 0.0, and the powers as DP ja·AUX.k.POWER. ̂with
default value 1.0. For example, for N̂ = 2 the radial variable,
ρ, encoded as the one and only auxiliary variable, would have
parameters

DP ja = ’NAUX: 1’

DP ja = ’AUX.1.COEFF.1: 1’

DP ja = ’AUX.1.POWER.1: 2’

DP ja = ’AUX.1.COEFF.2: 1’

DP ja = ’AUX.1.POWER.2: 2’

DP ja = ’AUX.1.COEFF.0: 0’

DP ja = ’AUX.1.POWER.0: 0.5’

The only restriction on the values of these coefficients is that
ρk must be defined at all points within the image. In practice
this means that care must be exercised to avoid the possibility
of raising a negative number to a fractional power, or zero to a
negative power.

Having defined the auxiliary independent variables,
DP ja·NTERMS with default value 0 defines the number of terms,
M ≥ 0, of the polynomial, each of the form

κ p̂λ1
1 p̂λ2

2 . . . p̂
λN̂

N̂
ρ
µ1
1 . . . ρ

µK
K . (12)

These will be encoded as DP ja·TERM.m.COEFF with default
value 1.0 for κ, DP ja·TERM.m.VAR. ̂with default value 0.0 for
λ ̂, and DP ja·TERM.m.AUX.k for µk also with default value 0.0.

As before, the only restriction on the values of these coeffi-
cients is that the polynomial must be defined at all points within
the image. However, in order to accomodate terms of the form
x/ρ which is indeterminate when x = ρ = 0, we specify that if
any of the factors in Eq. (12) is zero, then the term is zero.

A total of (1 + 3N̂) + 1 + K(2N̂ + 2) + 1 + M(1 + N̂ + K)
coefficients are required to define the distortion function which
in fact is much more general than a simple polynomial. This
consists of an overhead of 3(N̂ + 1) + K(2N̂ + 2) coefficients
mostly used to define the independent and auxiliary variables,
and an increment of 1 + N̂ + K coefficients for each term of
the polynomial. For example, a 40-term polynomial in (x, y, ρ)
would require 174 coefficients, rather more than if the DP ja
had been given static definitions as coefficients of predefined
combinations of integer powers of the independent variables.
However, this formalism permits the definition of an arbitrary
number of auxiliary independent variables and does not restrict
the degree of the polynomial. The admission of negative and
fractional powers is also potentially very powerful.

Use of polynomial distortion functions will be signalled by
setting CPDIS ja (likewise CQDISia) to ’Polynomial’.

3.2. Cubic spline

Use of polynomial distortion functions will be signalled by set-
ting CPDIS ja or CQDISia to ’Cubic-spline’.

3.3. B-spline

Use of polynomial distortion functions will be signalled by set-
ting CPDIS ja or CQDISia to ’B-spline’.

3.4. Lookup

Some coordinate systems are so irregular that they cannot be
described with sufficient accuracy via analytic mathematical
expressions employing a reasonable number of coefficients.
Such systems are usually handled by some sort of table lookup
method. Although Paper III has already defined a general-
purpose ’-TAB’ algorithm of this nature, this is intended for
use as the complete definition of coordinate systems that are
very irregular, or indeed discontinuous, as illustrated by the ex-
amples given in Paper III. In the present context, the coordinate
system is presumed to be defined quite well by one of the stan-
dard linear or non-linear coordinate descriptions, with only a
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Table 1. Example distortion array header (blank lines have been inserted for clarity). Names used in the text for the pronumerals associated
with each keyword are indicated in square brackets.

123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789

XTENSION= ’IMAGE ’ / Image extension

BITPIX = -32 / IEEE floating-point

NAXIS = 2 / 2-D image

NAXIS1 = 129 / Number of image columns [N̂1]
NAXIS2 = 129 / Number of image rows [N̂2]

PCOUNT = 0 / Special data area of size zero

GCOUNT = 1 / One data group

EXTNAME = ’WCSDVARR’ / WCS distortion array

EXTVER = 1 / Distortion array version no.

CRPIX1 = 65.0 / Distortion array reference pixel [r̂1]
CDELT1 = 8.0 / Grid step size in 1st coordinate [ŝ1]
CRVAL1 = 513.0 / Image array pixel coordinate [ŵ1]

CRPIX2 = 1.0 / Distortion array reference pixel [r̂2]
CDELT2 = 7.9921875 / Grid step size in 2nd coordinate [ŝ2]
CRVAL2 = 1.0 / Image array pixel coordinate [ŵ2]

END

small residual correction to be applied. Use of ’-TAB’ in such
cases would disguise the basic nature of the coordinate system,
and might also be relatively inefficient.

For example, celestial coordinates in optical photographic
plates are often adequately represented by a ’-TAN’ projec-
tion with a small residual correction that can be described by
the lookup method to be described here. Using ’-TAB’ in this
case would preclude the use of ’-TAN’ thereby obscuring the
fundamental nature of the coordinate system, and probably re-
quiring a larger lookup table. Also, the assumption that distor-
tion corrections are small and smoothly varying allows a rather
simpler lookup method to be defined here. In particular it omits
the powerful, though complicated indexing method employed
by ’-TAB’. As a practical example of the distinction between
between the two methods, a map of the Earth might use a stan-
dard spherical projection with a ’Lookup’ distortion correc-
tion to correct for the Earth’s mild oblateness, whereas a map
of the very irregular surface of the asteroid Eros would proba-
bly gain little by modelling it as a sphere and could use ’-TAB’
directly to good advantage.

In the one-dimensional case, the usual approach is to de-
fine a “lookup table” with dependent and independent variables
occupying separate columns. However, in the general multi-
dimensional case it is more appropriate to speak of an “array”
for which the correction, stored as the array value, is indexed
by a number of independent variables. Such an array may be
treated as an ordinary FITS image, subject to the usual forms
of display and analysis. Having two arrays provides great scope
for confusion so we will be careful always to distinguish be-
tween the image array and the distortion array. In particular, in
this section, all pronumerals associated with the distortion ar-

ray will be distinguished by a circumflex (“hat”) accent, e.g.
r̂ ̂.

At one extreme, the distortion array could simply store a
correction for each pixel in the image. In practice, though, suf-
ficient accuracy should be obtainable by interpolating on a reg-
ularly spaced sub-grid. For example, if a correction were pro-
vided for every 10th image pixel in either direction in a two-
dimensional image then the distortion array would have a size
only 1% of that of the image.

Distortion array values will be stored as a FITS image
extension (Ponz et al. 1994) for which EXTNAME is set to
’WCSDVARR’. EXTVER will be used to distinguish between mul-
tiple distortion arrays within a single FITS file; each must de-
fine EXTVER with a unique value and DP ja·EXTVER will be used
to select one. Hanisch et al. (2001) specify that EXTVER has a
default value of 1 if omitted from the FITS header, and so like-
wise for the corresponding DP ja keyword.

The dimensionality of the distortion array, denoted by N̂,
is defined by DP ja·NAXES. The first axis of the distortion array,
̂ = 1, corresponds to image array pixel axis j1 (or interme-
diate pixel axis i1) defined by DP ja·AXIS.1; the second axis,
̂ = 2, corresponds to j2 given by DP ja·AXIS.2, and so on, so
that in general, distortion array axis ̂matches image array axis
j ̂. There is no need for the image and distortion array axes to
match, either in number or order, nor for any of the j ̂ to match
the j that appears in DP ja. However, no two axes in the dis-
tortion array are allowed to match the same axis in the image
array. Hence, N̂ ≤ N, where N is the dimensionality of the
image array.

Standard WCS keywords, CRPIX ̂, CDELTı̂, and CRVALı̂, in
the distortion array header will define the association between
distortion array pixel coordinates and image array pixel coor-
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dinates (or intermediate pixel coordinates - but henceforth we
will consider only δp(p), the treatment for δq(q) being similar).
PCı̂ ̂will not be used and hence we do not distinguish between
ı̂ and ̂ subscripts on the FITS keywords.

CRPIX ̂ defines the elements, r̂ ̂, of the reference pixel coor-
dinate in the distortion array which correspond to image pixel
coordinate elements ŵ ̂ defined by CRVAL ̂.

Elements along axis ̂ in the distortion array are spaced by
ŝ ̂ pixels along axis j ̂ of the image array, where ŝ ̂, specified
by CDELT ̂, need not be integral and may be negative, but must
be non-zero.

From the foregoing, the relationship between distortion ar-
ray pixel coordinate element p̂ ̂ and image pixel coordinate el-
ement p j ̂ is

p j ̂ = ŝ ̂ ( p̂ ̂ − r̂ ̂) + ŵ ̂. (13)

A distortion array may be associated with a subimage ex-
tracted from an image by suitably changing CRPIX ̂, CRVAL ̂,
and/or CDELT ̂. If storage space is a consideration, this could
also be accompanied by a reduction in the number of columns
and rows.

However, as discussed in Sect. 2.2, in all cases the distor-
tion array must cover the whole of the image array. This “no-
extrapolation” requirement, in conjunction with the differential
of Eq. (13),

∆p j ̂ = ŝ ̂ ∆p̂ ̂, (14)

has repercussions for the geometry of the distortion array:

– N̂ ̂ > 1 for all axes in the image array with N j ̂ > 1. This
arises because if there are two pixels on axis j ̂ of the image
array so that ∆p j ̂ > 0, then there must also be two pixels
in the distortion array so that ∆p̂ ̂ > 0.

– Considering that it may not always be possible to determine
a sensible distortion correction beyond the domain of the
image array, it will often be required that the edges of the
distortion array coincide with the edges of the image array
(i.e. so that p j ̂ = 1 for p̂ ̂ = 1 and p j ̂ = N j ̂ for p̂ ̂ = N̂ ̂).
In that case Eq. (14) gives

ŝ ̂ = (N j ̂ − 1)/(N̂ ̂ − 1). (15)

While non-integral values of ŝ ̂ are allowable, in construct-
ing the distortion array they necessitate computation of the
distortion correction at fractional pixel coordinates in the
image array. On the other hand, if ŝ ̂ is to be integral,
Eq. (15) restricts the possible values of N j ̂ and N̂ ̂. A good
strategy might be to make each of the form 2n + 1.

Table 1 illustrates this last point for a distortion array with N̂1 =

N̂2 = 129 constructed for an image array of dimensions N j1 =

1025 and N j2 = 1024. However, in this case ŝ2 might have been
made integral by constructing the distortion array with N̂2 = 93
whence ŝ2 = 11.

In constructing the distortion array, ŝ ̂ must be chosen small
enough so that the correction at any given pixel may be deter-
mined with sufficient accuracy by linear interpolation within
the distortion array. Higher-order interpolation is proscribed

since it may lead to anomalies in the presence of discontinu-
ities in the coordinate value or its derivatives, and also because
having a fixed interpretation will eliminate potential confusion
as to what exactly the correction is meant to be.

Linear interpolation in the N̂-dimensional distortion array
may be done conveniently via the following prescription:

1. Given the image pixel coordinates of point P for which the
distortion correction is required, determine the correspond-
ing pixel coordinate in the distortion array via the inverse
of Eq. (13):

p̂ ̂ = r̂ ̂ + (p j ̂ − ŵ ̂)/ŝ ̂. (16)

These must be such that 1 ≤ p̂ ̂ ≤ N̂ ̂ otherwise the point
is outside the distortion array and the result undefined. If
p̂ ̂ = N̂ ̂ then decrement it by 1.

2. Determine the coordinates of point P0 in the distortion ar-
ray with integral pixel coordinate elements b p̂ ̂c, where the
floor function, bxc, gives the largest integer less than or
equal to x.

3. Form the coordinates of the 2N̂ data points in the distortion
array surrounding P by incrementing the pixel coordinate
elements of P0 in all binary combinations, i.e. the vector
sum

Pk = P0 + B(k), k = 0, . . . , 2N̂ − 1 (17)

where B(k) is the pixel coordinate whose elements cor-
respond to the digits of k expressed as a binary num-
ber with least significant digit first. For example, B(5) =
(1, 0, 1, 0, . . . , 0). In fact, the ordering of the binary combi-
nations is arbitrary as long as each is included exactly once;
this particular ordering is suggested because it conforms to
the storage order of the distortion array.

4. Calculate the weight, Wk, for point Pk as the absolute value
of the product of the elements of B̄(k)−(P−P0), where B̄(k)
is the complement of B(k), e.g. B̄(5) = (0, 1, 0, 1, . . . , 1).

5. Look up the distortion correction, δk, at each of the 2N̂ data
points, Pk. The interpolated correction is then

δp j =

2N̂−1∑
k=0

Wkδk. (18)

In a practical implementation steps (3) to (5) would be rolled
into a loop over index k.

Use of polynomial distortion functions will be signalled by
setting CPDIS ja or CQDISia to ’Lookup’.

4. Applications

4.1. Astrometry

Photographic plates or CCD images taken with optical or other
telescopes are susceptible to distortions. Astrometrists have tra-
ditionally dealt with the problem by means of a plate solution.

Section 2.3 of Eichhorn (1974) discusses two schools of
thought in the construction of a plate solution. Each is based
on analysis of the Cartesian (x, y) plate coordinates of reference
stars that have accurately known celestial coordinates. Plate co-
ordinates are measured in the image plane (e.g. photographic
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Fig. 3. (Left) Offsets (×4, 000) computed by BENDXY on a 40 × 40 grid over the 350mm × 350mm plate area. The rms deviation of the offsets
is 3.7 µm and the maximum deviation is 15.4 µm. (Right) Residuals (× 40,000) of the BENDXY offsets after fitting by a 7th-degree polynomial
in x, y, and r. The rms deviation of the residuals is 0.10 µm and the maximum deviation is 0.47 µm. Note that the residuals are scaled by an
additional factor of ×10 over the offsets.

plate) to high-precision with a measuring engine (usually in
µm or mm rather than degrees). They may deviate in a compli-
cated way from the standard coordinates (ξ, η) expected of a
simple gnomonic projection (see also Murray 1983).

The model approach seeks to identify what it is that causes
the plate coordinates to deviate from standard coordinates.
Mathematical formulæ are derived for geometric effects such
as the translation, rotation, and tilt of the photographic plate;
non-linearities in the coordinate measuring machine; physical
effects such as refraction, aberration, precession and nutation;
and optical defects such as radial and decentering distortion.
These effects are parameterized by a number of unknowns that
must be determined by comparing the plate coordinates of the
reference stars with their computed standard coordinates.

The empirical approach, on the other hand, simply writes

ξ =
∑

ai jklxiy jmkcl,

η =
∑

bi jklxiy jmkcl. (19)

where m and c are magnitude and colour index, and deter-
mines the polynomial coefficients by least squares analysis of
the plate coordinates of the reference stars. It is left to empiri-
cal investigation to decide which terms are required in each of
the polynomials.

In terms of efficiency the model approach has a definite
advantage in that it generally requires fewer free parameters
to be determined than the empirical approach and they tend
to be much less correlated thereby making the fit more reli-
able. However, the empirical approach is arguably simpler and
more flexible and could unwittingly account for effects inad-
vertently omitted from a plate model. It was the method used

for the Guide Star Catalogue (GSC, Lasker et al., 1990) of the
Hubble Space Telescope (HST) and consequently for the FITS
headers of the Digitized Sky Survey (DSS, 1992) and is the
method adopted here for image transport purposes. Of course,
a model fit can still be used initially to determine a plate so-
lution, then a least squares polynomial fit to this model used
solely for FITS image transport. This will satisfy FITS readers
who simply want accurate image coordinates and are not par-
ticularly interested in the details of the plate solution (such as
was the case with DSS).

Magnitude and colour terms in Eq. (19) cannot be handled
because any dependence of coordinates on image pixel values
is outside the scope of this paper. However, the provision of
secondary coordinate descriptions in Paper I does alleviate this
to some extent since FITS writers could provide alternate de-
scriptions for particular magnitude or colour ranges if that level
of accuracy was warranted.

The main question is the degree of the polynomial that
might be needed. A first-degree polynomial, comprising three
terms for each of ξ and η is sufficient to account for an affine
transformation - translation, scale, rotation and skew. We note
that this so-called six-constant model can be handled by Eq. (1)
alone. Second degree terms are required to account for “plate
skewness” which results from assuming the incorrect tangent
point of the projection. König (1962) shows that 3rd-degree
terms are usually sufficient to account for refraction effects
even in large fields (though higher degrees may sometimes
be necessary), and Eichhorn (1974) provides terms up to 3rd-
degree for radial and decentring distortion of the optical sys-
tem.



12 Calabretta et al.: Representations of distortions in FITS world coordinate systems

Fig. 4. (Left) DEIMOS offsets (×20) computed on a 40 × 40 grid over the 8192 × 8192 pixel CCD array. The rms deviation of the offsets is
7.3 pixel with maximum deviation 46.3 pixel. (Right) Residuals (× 800) of the DEIMOS offsets after fitting by a 7th-degree polynomial in x,
y, and r. The residuals, which are scaled by an additional factor of ×40 over the offsets, have an rms deviation of 0.19 pixel and a maximum
deviation 1.38 pixel. This corresponds to 23 and 164 milliarcsec at the stated scale of 0.119 arcsec/pixel.

In practice, Russell et al. (1990) used a 3rd-degree poly-
nomial for the GSC, though the DSS did provide for a 5th-
degree term of the form (ξ, η) ∝ (xr4, yr4) but it was never
used. However, they report that 3rd-degree polynomials may
leave systematic uncorrected errors towards the edge of the
Schmidt plate. Murray (1984) notes that the Schmidt plate ge-
ometry is more naturally described by a zenithal equidistant
(ARC) projection rather than gnomonic, but a 3rd-degree radial
distortion term accounts for the difference. The solution pre-
sented by Holtzman et al. (1995) for the Wide Field Planetary
Camera 2 (WFPC2) on the HST also only contains terms up
to 3rd-degree, as does the solution by Aussel et al. (1999) for
ISOCAM observations of the Hubble Deep Field.

However, it has been found that terms up to 7th-degree may
be required to model the complex distortions found in some op-
tical systems. For example the three coefficient trigonometric
function that corrects for the distortions found in the corners
and towards the perimeter of UKST Schmidt plates, known as
BENDXY, gives the azimuthal and radial distortion as

∆ζ = ar4 cos 4ζ, (20)
∆r = br4 sin 4ζ + cr4 cos(4r/ f ), (21)

where ζ = arg(x, y) and4 f is the plate half-width, and this was
well approximated by a pair of 7th-degree polynomials with 10
terms for each of ξ and η. The results are shown in Fig. 3.

Another example considered was the so-called dual
point-of-symmetry distortion model for the DEIMOS Deep

4 arg() is the inverse tangent function returning angles in the correct
quadrant.

Extragalactic Imaging Multi-Object Spectrograph developed
by the UCO/Lick Observatory for installation on the Keck II
telescope. This nine-coefficient model consists of a 3rd-degree
polynomial that defines a radial correction for the telescope dis-
tortion combined with a 5th-degree polynomial that defines a
radial correction for the camera distortion. A displacement be-
tween the camera and telescope optical axes results in a compli-
cated non-radial distortion pattern in the image plane as shown
in Fig. 4. The pattern has reflection symmetry - “dual point-of-
symmetry” referring to the component distortion polynomials.
The DEIMOS distortion field was closely approximated by a
7th-degree polynomial with 24 terms for ξ and 16 terms for η.
In fact, within the imaging region of the CCD array a fifth-, or
perhaps a 4th-degree polynomial with 15 + 9 or 11 + 6 terms
would almost certainly suffice.

However, it was found in the DEIMOS analysis that inclu-
sion of terms in odd powers of rn significantly improved the fit.
We note that these rn terms do not define a radial distortion,
this being handled by terms of the form (ξ, η) = (xrn, yrn).

Nevertheless, some instruments require polynomials of de-
gree much higher than seven to model their distortions. The
Faint Object Camera (FOC) of the HST is one such and Perry
Greenfield (1995) used B-spline functions in this case.

From the discussion in Sect. 5.1 and 5.1.3 of Paper II we
may write the equations for the gnomonic projection in stan-
dard coordinates as

ξ =
180◦

π
sin φ cot θ, (22)

η = −
180◦

π
cos φ cot θ, (23)
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(24)

with inverse

φ = arg (−η, ξ), (25)

θ = tan−1

 180◦

π
√
ξ2 + η2

 . (26)

It remains only to connect (x, y) to (ξ, η) via a suitable distortion
function.

In this case (ξ, η) are elements of the intermediate world
coordinate vector x that must be scaled to “degree” units from
the corrected intermediate pixel coordinates q′ by applying s.
As noted in Sect. 2.3, the units of q′ and q must match. It is
therefore invalid, for example, for a CDi ja matrix to scale qi

to mm, and then for δqi (q) to scale q′i to degrees. Thus when
CDi ja is used, qi must be in degrees.

As noted above, the six-constant plate model, which ac-
counts for translation, rotation, skewness and scale, can be han-
dled solely by Eq. (1). Ideally the plate solution should be con-
structed in such a way that this affine transformation is handled
by the CRPIX ja, PCi ja, and CDELTia (or CDi ja) header cards.
The first-degree terms of the distortion polynomial would then
define an identity transformation with the remaining terms pro-
viding second-, and higher-degree corrections.

When CDi ja is used qi must be in degrees so the distor-
tion polynomial must be expressed in degrees. When PCi ja
and CDELTia are used there is greater freedom, qi might be
in pixels, mm, or degrees, though ideally scaling to degrees
should be left for CDELTia. In either case, the renormaliza-
tion factors described in Sect. 2.5.2 provide an opportunity to
rescale the independent variables of the distortion polynomial
to convenient units, and this may facilitate translation of exist-
ing plate solutions. Section 5.2 provides an example of trans-
lating a Digitized Sky Survey (DSS) FITS header into a TAN

projection with sequent polynomial distortion function.
In practice the distorted TAN projection differs little in ap-

pearance from the gnomonic projection shown in Fig. 8 of
Paper II.

4.2. Spectroscopy

Wide field Doppler correction...

5. Example headers

5.1. Header interpretation example 1

Example of interpreting a one-dimensional wavelength spec-
trum with a simple polynomial distortion correction...

5.2. Header construction example 1

In creating the Guide Star Catalogue for the Hubble Space
Telescope (HST), the Space Telescope Science Institute
(STScI) digitized the optical plates of the SERC Southern Sky
Survey obtained by the UK Schmidt Telescope together with
the Palomar Observatory Sky Survey (POSS) of the northern
sky obtained by the Oschin Schmidt Telescope.

The resulting Digitized Sky Survey (DSS) which covers the
entire sky is generally available as a set of 102 CDROM disks
and constitutes an extremely valuable astronomical resource.

The coordinate system associated with the DSS is described
in the booklets provided with the CDROM set. It is established
by a set of coefficients that define a polynomial plate solution.
The coefficients are encoded in an ad hoc way in a set of FITS
header cards and special purpose software is provided to inter-
pret the coordinate system.

Equations (27) to (32) reproduce the coordinate transfor-
mation described in the DSS booklet, except that some variable
names have been changed to avoid conflict with usage in this
paper, and conversion from arcsec to radians is shown explic-
itly in Eqs. (31) and (32).

The first step in computing celestial coordinates from DSS
pixel coordinates (P1, P2) is to compute linear offsets (X,Y) in a
left-handed Cartesian coordinate system measured in mm from
the plate centre

X = (xc − ρxP1)/1000, (27)
Y = (ρyP2 − yc)/1000, (28)

where (xc, yc) are the plate centre coordinates in µm, and
(ρx, ρy) are the dimensions of a pixel, in µm. DSS pixel coordi-
nates are measured with respect to the bottom left-hand corner
of a pixel, thus the first sample in the image has (P1, P2) =
(1.5, 1.5), which is at variance with the basic FITS standard.
Subimaging is done by defining (P1, P2) for the bottom left-
hand corner of the first pixel in the subimage via the CNPIX1

and CNPIX2 header cards. Standard coordinates are computed
via

Ξ = A1X + A2Y + A3 + A4X2 + A5XY + A6Y2 +

A7

(
X2 + Y2

)
+ A8X3 + A9X2Y + A10XY2 +

A11Y3 + A12X
(
X2 + Y2

)
+ A13X

(
X2 + Y2

)2
, (29)

H = B1Y + B2X + B3 + B4Y2 + B5XY + B6X2 +

B7

(
X2 + Y2

)
+ B8Y3 + B9XY2 + B10X2Y +

B11X3 + B12Y
(
X2 + Y2

)
+ B13Y

(
X2 + Y2

)2
, (30)

where (Ξ,H) are in arcsec. Note that (Ξ,H) = (A3, B3) at
(X,Y) = (0, 0) so the nominal plate centre is offset from
the reference point. In practice this offset frequently exceeds
5 arcmin.

The J2000.0 right ascension and declination are then given
by

α = αc + tan−1
(
γΞ/ cos δc

1 − γH tan δc

)
, (31)

δ = tan−1
(

(γH + tan δc) cos(α − αc)
1 − γH tan δc

)
, (32)

where (αc, δc) are the plate centre J2000.0 right ascension and
declination, and γ = π/(180× 3600) is a factor to convert from
arcsec to radians. These coefficients are encoded in the DSS
FITS header via the following keywords
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xc PP03

yc PP06

ρx XPIXELSZ

ρy YPIXELSZ

A1 AMDX1
...

...
A13 AMDX13

B1 AMDY1
...

...
B13 AMDY13

αc PLTRAH, PLTRAM, PLTRAS
δc PLTDECSN, PLTDECD, PLTDECM,

PLTDECS

The basic FITS header cards, CRPIX j, CDELTi, CTYPEi, CRVALi
do not appear in the DSS header.

In this example we will translate a DSS header into a
gnomonic (TAN) projection as defined in Sect. 4.1. We note that,
like the TAN projection, the DSS transformation is defined as a
deprojection. That is, the prescription given is that for com-
puting celestial coordinates from Cartesian coordinates in the
plane of projection. Moreover, Eqs. (31) and (32) follow stan-
dard astrometric practice in describing a gnomonic projection
in celestial coordinates (Russell et al., 1990) and this makes the
translation relatively straightforward. The derivation is given in
astrometry texts such as Section 5.4 of van de Kamp (1967) or
Section 161 of Smart (1965). To reproduce it we use the equa-
tions for computing celestial coordinates (α, δ) from native co-
ordinates (φ, θ) from Paper II,

α = αp + arg (sin θ cos δp − cos θ sin δp cos(φ − φp),
− cos θ sin(φ − φp))

δ = sin−1(sin θ sin δp + cos θ cos δp cos(φ − φp)).
(33)

Setting φp = 180◦ for a zenithal projection in the first of these
and, noting that sin θ cos δp > 0 in the region of the native pole,
we have

α = αp + arg (1 + cos φ cot θ tan δp, sin φ cot θ/ cos δp).

Substituting Eqs. (22) and (23) and noting that the x-term of the
arg() function is always positive so that it reduces to a simple
arctangent we obtain

α = αp + tan−1
(
κξ/ cos δp

1 − κη tan δp

)
, (34)

where κ = π/180◦. Likewise, using the second of Eqs. (33) and
the following relation from Paper II

cos δ cos(α − αp) = sin θ cos δp − cos θ sin δp cos(φ − φp)
(35)

together with Eq. (23) we have

δ = tan−1
(

(κη + tan δp) cos(α − αp)
1 − κη tan δp

)
. (36)

Comparing Eq. (31) with (34) and Eq. (32) with (36) it is clear
that we must make the associations

Ξ = 3600ξ,

H = 3600η,
αc = αp,

δc = δp.

In other words, (Ξ,H) are simply (ξ, η) measured in arcsec. In
the first instance we may therefore write

CTYPE1 = ‘RA---TAN’,

CTYPE2 = ‘DEC--TAN’,

CRVAL1 = αc,

CRVAL2 = δc,

LONPOLE = 180◦.

It now remains to translate the steps of the algorithm chain
that comprise the linear transformation and distortion func-
tion. As mentioned in Sect. 4.1, use of PCi ja and CDELTia
allows a degree of freedom in the scaling of (q1, q2). Since the
DSS polynomial is expressed in terms of independent variables
(X,Y) measured in mm, it is convenient to use a sequent distor-
tion correction following a PCi ja matrix that scales p to q in
mm, so that (q1, q2) are analogous to (X,Y). Even so, the DSS
polynomial coefficients cannot be copied directly since (Ξ,H)
are in arcsec, contrary to the caveat that q′ must be measured
in the same units as q. Nevertheless, the translation may be ef-
fected with a straightforward rescaling of the DSS coefficients
to produce q′ in mm. Then a rescaling applied by CDELTia con-
verts q′ to x in degrees, as required for a TAN projection, so
(x1, x2) may be identified with (ξ, η) = (Ξ,H)/3600.

It has often been stated in this paper that the distor-
tion function should be used to correct for small residual er-
rors that cannot otherwise be accounted for. Accordingly, the
translation will proceed in two steps. Firstly we will deduce
CRPIX ja, PCi ja and CDELTia for the first-order approximation
of Eqs. (29) and (30)

Ξ ≈ A1X + A2Y + A3, (37)
H ≈ B1Y + B2X + B3. (38)

Then we will deduce the distortion function that corrects for the
higher-order terms. It will simplify matters to work consistently
in mm, rewriting Eqs. (27) and (28) as

X = Xc − RxP1, (39)
Y = RyP2 − Yc, (40)

where

(Xc,Yc) = (xc, yc)/1000,
(Rx,Ry) = (ρx, ρy)/1000.

The first task is to translate non-standard DSS pixel coordi-
nates (P1, P2) to standard FITS (p1, p2) pixel coordinates. The
bottom left-hand corner of the first pixel in a DSS subimage has
coordinates defined by the CNPIX1 and CNPIX2 header cards
whereas the (p1, p2) pixel coordinates of this point are always
(0.5, 0.5). Hence

P1 = p1 + (CNPIX1 − 0.5), (41)
P2 = p2 + (CNPIX2 − 0.5). (42)
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It was noted above that the nominal plate centre does not co-
incide with the reference point of the projection to within tol-
erable accuracy. Consequently Eqs. (29) and (30) introduce a
significant offset that otherwise can only be accounted for by
CRPIX ja. Referring to Eqs. (37) and (38), let (X0,Y0) be such
that

A1X0 + A2Y0 + A3 = 0, (43)
B1Y0 + B2X0 + B3 = 0. (44)

Substituting Eq. (41) into (39) and Eq. (42) into (40) we have

X = Xc − Rx(p1 + (CNPIX1 − 0.5)), (45)
Y = Ry(p2 + (CNPIX2 − 0.5)) − Yc. (46)

Substituting (X0,Y0) and rearranging we obtain the reference
pixel coordinates CRPIX ja

CRPIX1 = r1 = (Xc − X0)/Rx − (CNPIX1 − 0.5),
CRPIX2 = r2 = (Yc + Y0)/Ry − (CNPIX2 − 0.5),

and also

X = X0 − Rx(p1 − r1), (47)
Y = Y0 + Ry(p2 − r2). (48)

It is convenient first to deduce the elements of the CDi ja
matrix and then consider how to split this into PCi ja and
CDELTia. Substituting Eqs. (47) and (48) into Eqs. (37) and
(38), and using Eqs. (43) and (44) to simplify we have

Ξ ≈ −A1Rx(p1 − r1) + A2Ry(p2 − r2),
H ≈ −B2Rx(p1 − r1) + B1Ry(p2 − r2).

Referring to Eqs.(1) and (2) and noting that (x1, x2) = (ξ, η) =
(Ξ,H)/3600 we obtain the elements of the CDi ja matrix

CD1 1 = s1m11 = −A1Rx/3600,
CD1 2 = s1m12 = A2Ry/3600,
CD2 1 = s2m21 = −B2Rx/3600,
CD2 2 = s2m22 = B1Ry/3600.

We require that the PCi ja matrix scale p to q, and hence q′,
in mm, and that CDELTia scale q′ from mm to degrees. Now
A1, A2, B1, and B2 mainly describe a small rotation followed
by a scaling from mm to degrees that is very nearly isotropic.
Since we are completely free in the choice of CDELTia it is
convenient to force these to scale isotropically with any small
non-isotropic residuals remaining in the PCi ja matrix. Thus

CDELT1 = s1 = −S/3600,
CDELT2 = s2 = S/3600,

where

S =
√

A1A2 − B1B2.

Note that s1 is negative in accord with the general practice of
setting CDELTia negative for the RA axis. The elements of the
PCi ja matrix follow directly:

PC1 1 = m11 = −A′1Rx,
PC1 2 = m12 = A′2Ry,
PC2 1 = m21 = −B′2Rx,
PC2 2 = m22 = B′1Ry,

where

(A′m, B
′
m) = (−Am, Bm)/S .

The reason for this definition will become apparent later.
At this point we have approximated the DSS coordinate de-

scription by a classical six-constant plate model solely using
the methods of Papers I and II. To complete a faithful transla-
tion it remains to define a distortion function using the methods
of this paper.

Now the intermediate pixel coordinates (q1, q2) obtained
from the PCi ja matrix that we have constructed do not match
the independent variables (X,Y) of the DSS polynomial given
by Eqs. (29) and (30). We have

q1 = −A′1Rx(p1 − r1) + A′2Ry(p2 − r2),
q2 = −B′2Rx(p1 − r1) + B′1Ry(p2 − r2),

but we want (X,Y) given by Eqs. (47) and (48). Solving these
we obtain

X = X0 − B′1q1 + A′2q2,

Y = Y0 + B′2q1 − A′1q2.

These may be handled as auxiliary variables of a sequent poly-
nomial distortion function as defined by Eq. (11). Thus

CQDIS1 = ’Polynomial’,
CQDIS2 = ’Polynomial’.

We can now begin to write the DQia parameters for each axis.
For N̂ = 2, the axis coupling parameters (Sect. 2.5.1) are:

DQ1 = ’NAXES: 2’, DQ2 = ’NAXES: 2’,
DQ1 = ’AXIS.1: 1’, DQ2 = ’AXIS.1: 1’,
DQ1 = ’AXIS.2: 2’, DQ2 = ’AXIS.2: 2’.

Renormalization of the independent variables is not required so
the relevant parameters may all be omitted.

The foregoing parameters are the ones with a fixed inter-
pretation for all distortion functions, the remainder are specific
to the polynomial distortion function of Sect. 3.1. These will
be written in abbreviated form to save space. Firstly, the two
auxiliary variables, X and Y , are defined as above:

DQ1·NAUX = 2, DQ2·NAUX = 2,

DQ1·AUX.1.COEFF.0 = X0, DQ2·AUX.1.COEFF.0 = Y0,
DQ1·AUX.1.COEFF.1 = −B′1, DQ2·AUX.1.COEFF.1 = B′2,
DQ1·AUX.1.COEFF.2 = A′2, DQ2·AUX.1.COEFF.2 = −A′1,

DQ1·AUX.2.COEFF.0 = Y0, DQ2·AUX.2.COEFF.0 = X0,
DQ1·AUX.2.COEFF.1 = B′2, DQ2·AUX.2.COEFF.1 = −B′1,
DQ1·AUX.2.COEFF.2 = −A′1, DQ2·AUX.2.COEFF.2 = A′2.

All of the DQi·AUX.k.POWER. ̂ parameters have been omitted
since they default to 1.0 as required here. Note that the auxil-
iary variables have been defined as (ρ1, ρ2) = (X,Y) for i = 1,
and (ρ1, ρ2) = (Y, X) for i = 2 since this allows a more direct
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translation of Eqs. (29) and (30). Equation (29) may now be
encoded in 13 terms, though not the same 13 as given:

DQ1·NTERMS = 13

DQ1·TERM.1.COEFF = A′1
DQ1·TERM.1.AUX.1 = 1

DQ1·TERM.2.COEFF = A′2
DQ1·TERM.2.AUX.2 = 1

DQ1·TERM.3.COEFF = A′3
DQ1·TERM.4.COEFF = A′4 + A′7
DQ1·TERM.4.AUX.1 = 2

DQ1·TERM.5.COEFF = A′5
DQ1·TERM.5.AUX.1 = 1
DQ1·TERM.5.AUX.2 = 1

DQ1·TERM.6.COEFF = A′6 + A′7
DQ1·TERM.6.AUX.2 = 2

DQ1·TERM.7.COEFF = A′8 + A′12
DQ1·TERM.7.AUX.1 = 3

DQ1·TERM.8.COEFF = A′9
DQ1·TERM.8.AUX.1 = 2
DQ1·TERM.8.AUX.2 = 1

DQ1·TERM.9.COEFF = A′10 + A′12
DQ1·TERM.9.AUX.1 = 1
DQ1·TERM.9.AUX.2 = 2

DQ1·TERM.10.COEFF = A′11
DQ1·TERM.10.AUX.2 = 3

DQ1·TERM.11.COEFF = A′13
DQ1·TERM.11.AUX.1 = 5

DQ1·TERM.12.COEFF = 2A′13
DQ1·TERM.12.AUX.1 = 3
DQ1·TERM.12.AUX.2 = 2

DQ1·TERM.13.COEFF = A′13
DQ1·TERM.13.AUX.1 = 1
DQ1·TERM.13.AUX.2 = 4

Distortion parameters for Eq. (30) are identical except that DQ1
is replaced by DQ2 and A′ by B′.

Parameters that have been omitted all default to zero as re-
quired. The Am coefficients of Eq. (29) have all been rescaled
by −1/S here to take account of the scaling that will be applied
to q′1 by CDELT1 in computing x1 = Ξ/3600. Likewise the Bm

coefficients are scaled by 1/S .
To complete the translation the polynomial distortion func-

tion should be evaluated at all points across the image to deter-
mine values of CQERR1, CQERR2, and DVERR. The header should
also include

RADESYS = ‘FK5’,

EQUINOX = 2000.0.

5.3. Header construction example 2

Curved slit. Minkowski (1942)

5.4. Header construction example 3

Wide field Doppler correction.

5.5. Header construction example 4

Correction for oblateness in terrestrial coordinates.
Mars Global Surveyor.

6. Summary

Table 2 summarizes all new FITS header keywords defined in
this paper, and Table 3 lists all field-specifiers defined for the
record-valued keywords DP ja and DQia.

We have developed a ...
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